dr. Andrey Krutov

Address: Institute of Mathematics CAS
Žitná 25
115 67 Praha 1
Czech Republic

Emails: a.o.krutov at gmail dot com GPG key, krutov at math dot cas dot cz GPG key.

MR author ID: 912066, Google Scholar ID: UIOivHUAAAAJ
Andrey Krutov

I am a postdoctoral researcher at Institute of Mathematics of Czech Academy of Sciences (Prague, Czechia). My research interests includes representation theory of Lie (super)algebra, geometry of integrable systems, quantum groups and noncommutative geometry. I got my PhD in June 2014 at University of Groningen, under supervision of Dr. Arthemy Kiselev and Prof. Dr. Jaap Top.

Publications

  1. F. Díaz García, A. Krutov, R. Ó Buachalla, P. Somberg, K. R. Strung (2021), Holomorphic relative Hopf modules over the irreducible quantum flag manifolds. Lett. Math. Phys. 111(1), 24 p. arXiv:2005.09652 [math.QA] link
  2. A. V. Kiselev, A. O. Krutov (2019), On the (non)removability of spectral parameters in \(\mathbb{Z}_2\)-graded zero-curvature representations and its applications. Acta Appl. Math., 160(1), pp. 129-167. arXiv:1301.7143 [math.DG] link
  3. A. Krutov, A. Lebedev (2018), On gradings modulo \(2\) of simple Lie algebras in characteristic \(2\). SIGMA Symmetry Integrability Geom. Methods Appl., 14(130), p. 27. arXiv:1711.00638 [math.RT] link (Open access)
  4. S. Bouarroudj, A. Krutov, D. Leites, I. Shchepochkina (2018), Non-degenerate invariant (super)symmetric bilinear forms on simple Lie (super)algebras. Algebr. Represent. Theory, 21(5), pp. 897-941. arXiv:1806.05505 [math.RT]
  5. A. V. Kiselev, A. O. Krutov, T. Wolf (2018), Computing symmetries and recursion operators of evolutionary super-systems using the SsTools environment. In N. Euler, ed., Nonlinear Systems and Their Remarkable Mathematical Structures, volume 1. CRC Press, Boca Raton, FL, pp. 390-407. arXiv:1805.12397 [nlin.SI]
  6. S. Bouarroudj, A. Krutov, A. Lebedev, D. Leites, I. Shchepochkina (2018), On restricted Lie (super)algebras in characteristic \(3\). Funct. Anal. Appl., 52(1), pp. 49-52. arXiv:1809.08582 [math.RT] link
  7. A. V. Kiselev, A. O. Krutov (2015), Gardner's deformation of the Krasil'shchik—Kersten system. J. Phys.: Conf. Ser., 621(1), 19 p., 012007. Group Analysis of Differential Equations and Integrable Systems (GADEISVII) (June 15-19, 2014; Larnaca, Cyprus), arXiv:1409.6688 [nlin.SI] link (Open access)
  8. A. V. Kiselev, A. O. Krutov (2014), Gardner's deformations as generators of new integrable systems. J. Phys.: Conf. Ser., 482(1), 6 p., 012021. Physics and Mathematics of Nonlinear Phenomena 2013, (June 22-29, 2013; Gallipoli, Italy), arXiv:1312.6941 [nlin.SI] link (Open access)
  9. A. V. Kiselev, A. O. Krutov (2014), Non-Abelian Lie algebroids over jet spaces. J. Nonlin. Math. Phys., 21(2), pp. 188-213. arXiv:1305.4598 [math.DG] link (Open access)
  10. A. V. Kiselev, A. O. Krutov (2012), Gardner's deformations of the graded Korteweg-de Vries equations revisited. J. Math. Phys., 53(10), 18 p., 103511. arXiv:1108.2211 [nlin.SI] link
  11. V. Hussin, A. V. Kiselev, A. O. Krutov, T. Wolf (2010), \(N{=}2\) supersymmetric \(a{=}4\)-Korteweg-de Vries hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation. J. Math. Phys., 51(8), 19 p., 083507. arXiv:0911.2681 [nlin.SI] link

Back to menu

Preprints

  1. A. Krutov, A. Lebedev, D. Leites, I. Shchepochkina, Nondegenerate invariant symmetric bilinear forms on simple Lie superalgebras in characteristic 2, 16 p. arXiv:2102.11653 [math.RT] (Updated version of OWP-2020-02)
  2. A. Krutov, D. Leites, J. Shang, Duflo-Serganova homology for exceptional modular Lie superalgebras with Cartan matrix, 20 p. arXiv:2008.12033 [math.RT]
  3. F. Díaz García, A. Krutov, R. Ó Buachalla, P. Somberg, K. R. Strung, Positive line bundles over the irreducible quantum flag manifolds, 49 p. arXiv:1912.08802 [math.QA] OWP-2020-01

Back to menu

Talks at conferences, workshops and research seminars

Back to menu

Other Academic Activity

Research visits

Visitors

Graduate Schools

I attended five graduate schools in geometry of partial differential equations (Kostroma, 2008, 2009; Gdynia 2012; Kouty nad Desnou, 2013; Pereslavl-Zalessky, 2015), the graduate school and the conference in Geometry & Quantum Theory of the GQT-cluster (Zeist, 2014), Advanced School on Integrability (Warsaw, 2017), Mini School on Schubert Calculus (Guangzhou, 2017).

Other Service

Back to menu